M51, Whirlpool Galaxy 04-15-17

This object is not a new one to me, or to any visitors to this site. If you have a telescope then you have probably looked at this galaxy colliding with another creating a spectacular view in images. This galaxy and it’s dance partner are roughly 23.16 million light years away in the constellation Canes Venatici. The larger galaxy is Messier 51, also known as the Whirlpool Galaxy, while the smaller galaxy it is colliding with is cataloged as NGC 5195. Discovered on October 13, 1773 by Charles Messier.

I recently purchased a used Celestron 8″ Schmitt-Cassegrain Telescope (SCT). This is a whole new beast to me in the world of astronomy since I’ve only ever used Newtonian Reflectors as my viewing and imaging source in the past. This, however, was my very first time imaging with this telescope although I’ve had it for over a month at this point.

This telescope has a focal length of 2300mm (Newtonian was 750mm), so I get a more magnified view of objects. The downside of this telescope is that it’s a bit “slower” than the Newtonian. The Newtonian had an aperture of F/5, meaning it allowed more light making objects appear brighter in a shorter amount of exposure time. The Celestron SCT I purchased has an aperture of F/10, so images need a much longer exposure to collect photons from deep space images. This telescope is typically used for planetary and lunar imaging as the magnification allows a much better view of these objects for visual and imaging purposes.

Considering all that, and the fact that I am using a low magnification guidescope, and that I attempted 5 minute images with a magnification of 86x compared to the 28x magnification I was getting with the DSLR and the Newtonian. I would have to say I am quite pleased with the final results of my first imaging session with the new-to-me telescope. Maybe a bit more tweaking needed for the polar alignment and I will have rounder stars, as you can see with the 5 minute exposures they are a little oblong.

M51, Whirlpool Galaxy in Ursa Major

M51, Whirlpool Galaxy in Canes Venatici (Schmitt-Cassegrain) April 2017

For a comparison, here is the image taken a few years back with the same camera, but connected to the faster, less magnified, Newtonian.

M51, Whirlpool Galaxy in Ursa Major (Newtonian)

M51, Whirlpool Galaxy in Canes Venatici (Newtonian) March 2014

Quite the reduction in field of view with the SCT, but the object being imaged is much larger. Both images were taken with a full spectrum modified Canon 350D, both were a combination of 5 minute images. The SCT was a combination of 10 images at 5 minutes a piece, and the Newtonian was 21 images at 5 minutes a piece. Both shot at ISO 800. Both images contained a set of dark images, but the Newtonian also made use of flat frames, which I did not do for the SCT image.

All in all, I’m extremely happy with the results of this new-to-me telescope, and I really look forward to more clear nights for imaging some of those small objects I never really attempted with my Newtonian telescope. I did purchase a focal reducer for the SCT which would essential turn my F/10 SCT into an F/6.3, but with that aperture reduction comes a reduction in magnification. If I remember correctly, adding the focal reducer would essential drop the 2300mm focal length to somewhere around 1200mm, which is still more magnification than I was getting with the Newtonian, and roughly the same aperture.

Equipment:
Celestron Celestar 8″ Schmitt-Cassegrain Telescope
CG-5 Mount
Canon 350D Full Spectrum Modification
Lin_Guider on Linux Ubuntu for autoguiding
Deep Sky Stacker for image stacking
Photoshop for post processing the stacked image

Mercury Transit May 09, 2016

I know it has been a while since I have posted anything, but I finally got some images stacked and edited from the May 9, 2016 Mercury Transit. I had an issue getting Registax to work properly under Linux through Wine, but I realized that, for whatever reason, Registax 6 didn’t like me using images (tif, CR2, and jpeg all didn’t work) although Registax 5 is perfectly fine with me using RAW files straight from the camera. Now that I got that figured out, here is one of the best shots from the Mercury Transit which contains about 50 of the best 100 images. Also included is my sketch of the event.

May 09, 2016 Mercury Transit

May 09, 2016 Mercury Transit Sketch

NGC 2023 – Horsehead and Flame Nebulae 01-06-16

That was a tough processing challenge working through all that light pollution to reveal the Horsehead and Flame nebulae. This is the best I could produce with my minimal knowledge of Pixinsight, switching between Harry’s Astroshed tutorials and scavenging online for other tips and tricks to editing DSLR images in PixInsight. I’m pretty pleased with this as it is hard to pull out much detail after removing light pollution without adding too much of that blotchy grainy noise in the background.

NGC 2023 – Horsehead and Flame Nebulae 01-06-16

Taken from a light polluted zone (red Bortle scale)
Telescope: Omni XLT 150
Mount: CG-5
Orion Starshoot Autoguider
Guiding in Linux with Lin_Guider
Modded Canon 350D

42 images at 5 minutes a piece. With 30 Flats, 30 Bias, and 40 Dark frames.

Straight out of the camera single image.

Andromeda – M31 September 04, 2015

This image is of the Andromeda galaxy taken on September 04, 2015. This image contains 6 images at 5 minutes a piece, along with 20 flat frames, 20 bias frames, and 20 dark frames. Processing, and post processing were all done in PixInsight.

Andromeda 09-04-15

This is only the second image I have ever processed completely in PixInsight so this is still a learning experience for me. I followed a tutorial on Light Vortex page on the steps to get a fully processed image using masks, and HDR tools.

I know I have been slacking on updating and posting here to my blog and I hope to get out more in the near future to continue imaging and editing the cosmos for you all to enjoy.

Equipment:
Omni XLT 150
CG-5 Advanced Series Go-To
Lin_Guider in Linux for autoguiding
Orion Starshoot Autoguider
Modified Canon 350D
Baader MPCC Mark III Coma Corrector